Carbon fiber polymer–matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit
نویسنده
چکیده
The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix composites is greatly improved by adding tellurium particles (13 vol.%), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%). The thermoelectric power is increased from 8 to 163 lV/K, the electrical resistivity is decreased from 0.17 to 0.02.X.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70 C is increased from 9 10 6 to 9 10 . Tellurium increases the thermoelectric power greatly. Bismuth telluride decreases the electrical resistivity and thermal conductivity. Carbon black decreases the electrical resistivity. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملThrough-thickness thermal conduction in glass fiber polymer–matrix composites and its enhancement by composite modification
Continuous glass fiber polymer–matrix composites are electrically insulating and used for printed wiring boards, but their thermal conductivity needs to be increased without sacrificing the electrical insulation ability. The through-thickness thermal conductivity of these epoxy–matrix composite laminates with in-plane fibers is found to be effectively modeled using the Rule of Mixtures with fib...
متن کاملContinuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity
Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling, as enabled by stacking composites with positive value (up to 400) and negative value (down to -600) of the electric permittivity, provide exceptionally high through-thickness permittivity up to 78,000 (B2.0 MHz), corresponding to a capacitance of 370 lF/m. The high capacitance is consistent with the e...
متن کامل